Solvation and reorganization energies in polarizable molecular and continuum solvents
نویسندگان
چکیده
The solvation free energy difference, DG , and reorganization energy, l, of the electronic transition between the ground and first excited state of formaldehyde are investigated as a function of the solvent electronic polarizability in aqueous solution. Solvent shifts are difficult to measure experimentally for formaldehyde due to oligomer formation; shifts for acetone, which have been measured experimentally, are used instead for comparison with computational results. Predictions of the Poisson–Boltzmann equation of dielectric continuum theory with molecular shaped cavities and charges on atomic sites calculated from ab initio quantum chemistry are compared with direct molecular dynamics simulations using the fluctuating charge model of polarizable water. The explicit molecule simulations agree with the acetone experimental results, but the continuum dielectric calculations do not agree with explicit solvent or with experiment when the default model cavity is used for both the ground and excited state molecule. Several different algorithms are used to define the size of the molecular cavity in the ground and excited states, but we are unable to find a single set of atomic radii that describe adequately all the data. Quantitative calculations from a continuum model might therefore require charge-dependent solute cavity radii. © 1997 American Institute of Physics. @S0021-9606~97!50206-6#
منابع مشابه
Solvation energies and electronic spectra in polar, polarizable media: Simulation tests of dielectric continuum theory
A dielectric continuum theory for the solvation of a polar molecule in a polar, polarizable solvent is tested using computer simulations of formaldehyde in water. Many classes of experiments, for example those which measure solvent-shifted vertical transition energies or electron transfer rates, require an explicit consideration of the solvent electronic polarization. Due to the computational c...
متن کاملFree energy functionals for polarization fluctuations: Pekar factor revisited.
The separation of slow nuclear and fast electronic polarization in problems related to electron mobility in polarizable media was considered by Pekar 70 years ago. Within dielectric continuum models, this separation leads to the Pekar factor in the free energy of solvation by the nuclear degrees of freedom. The main qualitative prediction of Pekar's perspective is a significant, by about a fact...
متن کاملQuantum Mechanical Studies on Free Energy of Solution of some Vitamins and their Correlation with Bioavailability
Polarizable Continuum Model (PCM) analysis has been carried out using B3LYP method with 6-311++G(d,p) basis set for three water soluble vitamins (biotin, L-ascorbic acid and pyridoxine) and one fat soluble vitamin (phylloquinone) in ten solvents with wide range of dielectric constants. In this paper, we report electrostatic, dispersion and repulsive interaction components of Gibb’s free energy ...
متن کاملBuilding cavities in a fluid of spherical or rod-like particles: A contribution to the solvation free energy in isotropic and anisotropic polarizable continuum model
A general formalism for the calculation of cavitation energies in the framework of the scaled particle theory has been implemented in the Polarizable Continuum Model (PCM), contributing to the nonelectrostatic part of the molecular free energy in solution. The solute cavity and the solvent molecules are described as hard spherocylinders, whose radius and length are related to the actual molecul...
متن کاملThermodynamic stability of hydrogen-bonded systems in polar and nonpolar environments
The thermodynamic properties of a selected set of benchmark hydrogen-bonded systems (acetic acid dimer and the complexes of acetic acid with acetamide and methanol) was studied with the goal of obtaining detailed information on solvent effects on the hydrogen-bonded interactions using water, chloroform, and n-heptane as representatives for a wide range in the dielectric constant. Solvent effect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997